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Abstract

In this note, the derivations of the higher order, 1-D (or 2-D), theories are discussed for the dynamic analysis of
electroelastic (i.e., piezoelectric, piezothermoelastic and thermopiezoelectric) structural elements of uniform cross-
section (or uniform thickness). Certain oversights are clarified concerning the higher order theories, including their
variational formulation, invariant form and uniqueness of solutions that obscure the availability of earlier contributions
in the open literature. In this respect, a higher order theory with some applications by Wu et al. most recently appeared
in this journal [Int. J. Solids Struct. 39 (2002) 5325] is mentioned as one of the examples.
© 2003 Elsevier Ltd. All rights reserved.

Keywords: Higher order theory; Electroelastic structural elements; Variational principles; Uniqueness of solutions

1. Introduction

Structural elements, rods and shells, are mathematical models for continua having their two or one
dimensions much smaller than the third. In mathematically predicting the physical response of elements,
some special types of one- and two-dimensional (1-D and 2-D) theories that may be traced back to the
eighteenth century were proposed with little or no reference to their third dimension. The 1-D and 2-D
theories that were mainly bound to linear elasticity were formulated under the well-known ad hoc, Ber-
noulli-Euler, Lagrange and Love and alike hypotheses of elements. The theories were referred, for instance,
to Todhunter and Pearson (1886), Ericksen and Truesdell (1958) and Truesdell (1960). The resulting theo-
ries are naturally lacking in increasing accuracy and estimation of errors, but they are still in use due to their
simplicity and clarity. Apparently, some other techniques were needed in deriving systematically 1-D and 2-
D rational theories rather than by the ad hoc hypotheses. At the beginning of the nineteenth century, several
French mathematicians sought to obtain the 2-D theories of elastic plates from the linear 3-D theory of
elasticity. As noted by Habip (1965), von Kdarman who presented his well-known theory of elastic plates
without proof in 1910 indicated that a direct reduction of the 3-D theory to 1-D and 2-D theories is a very

*Corresponding author. Tel.: +90-212-285-6415; fax: +90-212-285-6454.
E-mail address: cengiz.dokmeci@itu.edu.tr (M. Cengiz Dokmeci).

0020-7683/03/$ - see front matter © 2003 Elsevier Ltd. All rights reserved.
doi:10.1016/S0020-7683(03)00185-9


mail to: cengiz.dokmeci@itu.edu.tr

4700 G. Askar Altay, M. Cengiz Dokmeci | International Journal of Solids and Structures 40 (2003) 4699-4706

Nomenclature

x; fixed, right-handed system of Cartesian (or Cartesian convected) coordinates
0 fixed, right-handed system of geodesic normal (and convected) coordinates

t time

(g;,g), (a;,a’) base vectors of space and the middle surface of shell
characteristic length of cross-section, length of rod
min thickness of shell, least principal radius of curvature of the middle surface of shell
0, O, temperature increment, reference temperature
& (=d/L) rod parameter (<1)
és (= h/|Rmin|) shell parameter (1)
& (= ©/0,) temperature parameter (K1)
u;, ;  components and shifted components of mechanical displacements
u"™" 4" mechanical components of order (m,n) and (n)
by Gimny» P €lectric potential, electric potential of order (m,n) and (n)
O (mny> Oy temperature increment of order (m,n) and (n)
Con functions with derivatives of order up to and including (m, n) with respect to (x; or ¢', )

important topic of future research, in his 1939 Josiah Willard Gibbs lecture given before the American
Mathematical Society. Perhaps, motivated by von Kdrmén’s lecture and influence, a large number of 1-D
and 2-D theories were developed especially in third quarter of the twentieth century.

2. One- and two-dimensional theories

In predicting the physical response of a structural element, its 3-D theory is obviously more accurate but
less tractable in analytical treatment than its 1-D (or 2-D) theory. In the 1-D (or 2-D) theory, the field
variables are assumed to be not varied widely over the cross-section of rod (or across the thickness of shell),
and hence, they may be averaged over the cross-section (or across the thickness), whereas in the 3-D theory,
no restrictions are imposed. Both the 1-D (or 2-D) theory and the 3-D theory naturally contain some
inevitable errors of experimental nature due to the constitutive modelling of element material. This type of
errors cannot be measured or be reduced by simply increasing the accuracy of computation. Besides, some
errors always remain in applications as a result of the rate and type of loading and the prescription of
boundary and initial conditions as well as the method of computation employed. The relative merit of using
either a 1-D (or 2-D) theory or a 3-D theory of an element basically depends on the element parameter, that
is, the rod parameter (or the shell parameter), in each specific application. The rod parameter is defined by
& (=d/L < 1) where d is a characteristic length of the cross-section and L is the length of the rod. The shell
parameter is given by & (= h/|Rmin|) where £ is the thickness of shell and Ry, denotes the least principal
radius of the middle surface of shell). However, the 1-D (or 2-D) theory is generally more desirable and thus
employed in investigating the physical response in the presence of coupled mechanical, electrical and
thermal effects. Actually, considerable effort continued to grow in deriving the 1-D and 2-D theories for
structural elements made up of time-dependent and/or temperature-dependent and even moisture-depen-
dent anisotropic materials. In spite of a large number of contributions, there remain still unanswered
questions in the 1-D and 2-D theories, involving the existence of solutions (e.g., Dikmen, 1982; Ciarlet,
1998), the role of convergence (Oliveira, 1974), the estimation of errors (John, 1965) and, in particular, the
effect of the rod (or shell) parameter that indicates the range of applicability in the 1-D (or 2-D) theory.
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3. Method of reduction

A rod (or shell) theory for continua is extracted from the 3-D theory by various methods of reduction
under the fundamental assumption of ¢, < 1 (or & < 1). The fundamental assumption permits one to treat
the rod (or shell) as a 1-D (or 2-D) mathematical model of the 3-D continua. Of the various methods of
reduction [for a review of the methods, see Kil’chevskiy (1965), Gol’denveizer (1964, 1997), Naghdi (1972)
and Pikul (2000)], the method of asymptotic integration and the method of series expansions due to
Mindlin were widely employed in deriving the 1-D and 2-D theories of electroelastic elements. The method
of asymptotic integration was proposed by Gol’denveizer and Lur’e (1947) in deriving the theories of elastic
shells. Much later, it was applied to establish the theories of piezoelectric plates (e.g., Maugin and Attou,
1990), and rods and shells [e.g., Le (1999) who included a review of pertinent literature]. Mindlin’s method
of reduction was based on the series expansions of Cauchy (1828) and Poisson (1829), and the integral
method of Kirchhoff (1850). By the method, the 3-D theory of a continuum may be systematically and
consistently converted into a hierarchy of its 1-D (or 2-D) theory, including all the significant electroelastic
effects as deemed necessary. Following the seminal paper of Tiersten and Mindlin (1962) on the higher
order 2-D theory of piezoelectric plates, the method was successfully applied in establishing the higher
order theories of piezoelectric rods, plates and shells. The higher order theories of electroelastic structural
elements were reviewed, for instance, by Tiersten (1969), Dokmeci (1978, 1980, 1988a), Mikhailov and
Parton (1990), Saravanos and Heyliger (1999), and Wang and Yang (2000).

4. Electroelastic 1-D and 2-D higher order theories
4.1. Assumptions

In deriving the 1-D (or 2-D) electroelastic theory of an element, that is, ¢ or & < 1, all the field variables
are assumed to exist, single-valued and continuous functions of the space coordinates and time, under the
suitable regularity and smoothness assumptions for the region of element with no singularities of any type.
Accordingly, a kinematic type of hypotheses was usually invoked as a starting point of reduction due to the
fact that the differentiation operation is generally simpler than the integration operation, and besides the
compatibility type of equations were not needed. The mechanical displacements, the electric potential and
the temperature increment were almost always chosen as the basic field variables in the derivation of 1-D
and 2-D theories. Any other field variables (e.g., stresses, strains, energy, electric displacements, electric
fields, heat flux) may be chosen as a point of departure. The choice of basic field variables is a point of
importance that is in need of further elaboration.

4.2. Rods

The basic field variables of a rod were selected as the mechanical displacements u;, the electric potential ¢
and the temperature increment @ of the form

MN

[ui(xﬁ t)? (,ZS(X,-, t)? @(xiv t)] = Z [ul(m,rl) (X3, t)a (rb(m,n) (X3, t)v @(m,ﬂ) (X3, t)]anxg (1)

m,n=0

Here, the rod is referred to by a fixed, right-handed system of Cartesian [Cartesian convected for a thermo-
piezoelectric rod] coordinates x; (i = 1,2, 3) where the x,-axes (« = 1, 2) are the principal axes of cross-section
of, and the x;-axis denotes the locus of centroids of cross-section of rod. Then, a system of 1-D higher order
theory of piezoelectric rods (Dokmeci, 1974a; Chou et al., 1991, and for a review, see Mikhailov and Parton,
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1990) and that of thermopiezoelectric rods (Askar Altay and Dokmeci, 2002a) were derived. The physical
and geometrical non-linearity, the effect of second sound and the temperature dependency of a material are
all incorporated into the higher order 1-D theory of thermopiezoelectric rods. The higher order theory is
capable of predicting all the types of high- (or low-) frequency vibrations where the wavelengths are much
smaller (or much larger) than the characteristic length of the cross-section of the rod.

4.3. Plates

The basic field variables of a plate were chosen, as in the case of rod, in the form

N
[ui(xj’t)vd)(xiat)?@(xivt)] = Z[”En)(xwt)’¢(r1)(x0<’t)’@(n)(xdat)}P(x.?)v P(X3) :xg (2)
n=0

where the plate is referred to by a fixed, right-handed system of Cartesian coordinates x; where the x,-axes
are located on the middle plane of a plate and the x;-axis is normal to the middle plane of plate. The
function P(x;) was mostly used as power series (e.g., Tiersten, 1969; Mindlin, 1972, 1989), and also, as
trigonometric series in a few studies (e.g., Bugdayci and Bogy, 1981; Lee et al., 1987) and as Legendre
polynomials (Batra and Vidoli, 2002). In Eq. (2), instead of the electric potential, Tiersten and Mindlin
(1962) used the electric displacements. Recently, Wang and Yang (2000) published a comprehensive review
article that summarised the development of higher order theories for piezoelectric plates and described their
applications, as previously did Dokmeci (1980, 1988a) in his surveys and Tiersten (1969), Zelenka (1986)
and Le (1999) in their treatises. Most recently, Tiersten (2002) dealt with the derivation of a higher order
2-D theory of electroted piezoelectric plates. As for thermopiezoelectric plates, Mindlin (1974, 1989) de-
rived the theory of high-frequency motions of crystal plates accounting for coupling of mechanical, elec-
trical and thermal fields. In a system of fixed, right-handed Cartesian convected coordinates, Askar Altay
and Dokmeci (2001) formulated a system of 2-D plate theory for thermopiezoelectric materials subjected to
strong electric fields and large deflections and included the effect of second sound. The theory accommodate
all the types of vibrations at low-frequency where the wavelength is large as compared with the thickness of
plate and also at high-frequency where the wavelength is of the order of magnitude or smaller than the
thickness. Also, Dokmeci and Altay (2003) reported a higher order theory of porous piezoelectric plates in
both invariant, differential and variational forms.

4.4. Shells

The first attempt to derive the higher order theory of a piezoelectric shell was due to Dokmeci (1974b), as
remarked, for instance, by Mikhailov and Parton (1990). He deduced the 2-D theory in invariant form from
the 3-D theory by choosing the basic field variables as the mechanical displacements and the electric
potential of the form, namely

@ (0,0, (0,),0(0",0)] = D [ (0%,0), () (07,1), Oy (67 OIP(E"), P(6) = (6°)" (3)

where the functions uE") € Ch, qﬁ(n) € Cyp and O, € Co are unknown a priori and independent functions of
order (n) to be determined. The shell is referred to by a fixed, right-handed system of geodesic normal
coordinates 6 where the 6*-curves are located on the middle surface of shell, the 6°-axis is normal to the
middle surface and 6° = 0 defines the middle surface. The components u; and shifted components #; (see
Naghdi, 1963; Librescu, 1975) of mechanical displacements, that is, the components referred to the base
vectors (g;, g') of space and those [(a,, a3); (a*, a*)] to the base vectors of middle surface, are associated with
one to another, namely
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u=ug =u'g =ua +ma =wa, +w'ay, u,=pluy, = (,u”);uﬁ, W=uy =0 =i (4)

Wi = 8= 0%},
Here, Einstein’s summation convention is implied for all repeated Latin indices (1,2, 3) and Greek indices
(1,2). The pj denotes the shifters, and b}, H and K stand for the mixed components of second fundamental
form, the mean and Gaussian curvatures of middle surface of shell, respectively. In the case of a plate, the
curvature effect vanishes, b,; = 0 and hence the shifters are reduced to the Kronecker deltas, My = 5}'; and
u; = u;. The formulation of piezoelectric shell theory is in tensor notation and accordingly, they can be
readily expressed in any particular coordinate system most suitable for the geometric configuration at hand.
Most recently, in a fixed, right-handed system of geodesic normal convected coordinates, another higher
order theory (Askar Altay and Dokmeci, 2002b) was developed for non-linear vibrations of thermo-
piezoelectric shells subjected to small temperature change and strong electric fields, under large deflections
and including the effect of second sound. The higher order theory governs all the types of non-linear
vibrations at both low-frequency and high-frequency, and its fully variational form allows one to make
simultaneous approximations upon all the field variables of thermopiezoelectric shells. Evidently, the unified
theory is in agreement with and recovers, as special cases, some of earlier 1-D and 2-D higher order theories
of piezoelectric, piezothermoelastic and thermopiezoelectric elements.

po(p)y =05, H =13b,, K =|b]] (5)

4.5. Piezothermoelastic elements—uniqueness of solutions

In piezothermoelasticity (Nowinski, 1978; Haojiang and Weiqiu, 2001), a special case of thermo-
piezoelectricity, the piezoelectric field is taken to be uncoupled from the thermal field as in uncoupled
thermoelasticity (e.g., Boley and Weiner, 1960). Thus, the higher order 1-D and 2-D theories in piezo-
thermoelasticity are readily obtainable from those mentioned above in thermopiezoelectricity. In so doing,
the equation of heat conduction is excluded and the terms involving the temperature increment are retained
only in the constitutive relations. On the other hand, in all the higher order 1-D and 2-D theories of elec-
troelastic elements, the existence and uniqueness of solutions, that is, the internal consistency of solutions,
are of special importance. The uniqueness of solutions were well established by means of the classical energy
argument and the boundary and initial conditions sufficient for the uniqueness were enumerated for the
higher order theories of piezoelectric rods (Dokmeci, 1974a), plates (Tiersten, 1969; Mindlin, 1989) and
shells (Dokmeci, 1974b). As for the thermopiezoelectric elements, the uniqueness of solutions was investi-
gated for thermopiezoelectric rods (Askar Altay and Dokmeci, 2002a), plates (Mindlin, 1974, 1989) and
shells (Askar Altay and Dokmeci, 2002b). However, the existence of solutions has yet to be investigated in
solutions of the 3-D theory as well as those of higher order 1-D and 2-D theories.

5. Electroelastic variational principles

Variational principles, integral and differential types (i.e., with and without an explicit functional), with
their key features were contrived in piezoelectricity and thermopiezoelectricity. They were especially used in
systematically deriving the higher order 1-D and 2-D theories. In piezoelectricity, Tiersten and Mindlin
(1962), Tiersten (1967, 1969) and EerNisse (1967) primarily develop some two-field variational principles
that operate on the mechanical displacements and the electric potential, by use of Hamilton’s principle.
Dokmeci (1973) reported some variational principles operating on six field variables, including the jump
conditions across an internal surface of discontinuity as well as the initial conditions. Also, Dokmeci
(1988b) deduced some variational principles from Hamilton’s principle by modifying it through an
involutory (Friedrichs’ or Legendre’s) transformation in nonlinear piezoelectricity and Dokmeci (1990)
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derived a variational principle for piezoelectric continua under a bias. As for thermopiezoelectricity,
Mindlin (1974, 1989) obtained a three-field variational principle that yields the divergence equations (i.e.,
the stress equations of motion, the charge equation of electrostatics and the equation of heat conduction)
and the associated boundary conditions, an extended version of this principle was reported by Dokmeci
(1978, 1980). Askar Altay and Dokmeci (1996) derived some variational principles for thermopiezoelectric
continua with a fixed internal surface of discontinuity with the aid of Toupin’s (1956) principle of virtual
work in elastic dielectrics and the thermal field vector. The thermal field vector ¢; (= —©,, that is, the
gradient of temperature increment), a new concept, similar to the electric field vector E; (= —¢,, that is, the
gradient of electric potential) is introduced to maintain the consistency of the gradient equations of ther-
mopiezoelectric fields. The unified variational principles generate the divergence equations, the gradient
equations (i.e., the strain-mechanical displacement, electric field-electric potential and thermal field-tem-
perature increment relations), the constitutive relations and the associated natural boundary conditions as
well as the jump condition across the surface of discontinuity. Most recently, a generalised version of this
principle was given for thermopiezoelectric continua subjected to large deflections, strong electric fields and
temperature increment and also, including the effect of second sound (Askar Altay and Dokmeci, 2002b). A
comprehensive account of the differential and integral types of dynamic variational principles, including
their features, formulations and applications, was reported, for instance, by Tiersten (1969), Dokmeci
(1978, 1980, 1988a,b) and Mikhailov and Parton (1990).

6. An example: a higher order theory for piezoelectric shells

In a most recent paper, Wu et al. (2002) developed a higher order theory of piezoelectric shells with
graded material properties in the thickness direction, that is, the constitutive behavior was assumed to be
dependent on the thickness coordinate [cf., for instance, a theory of vibrations of coated, thermopiezo-
electric laminae with homogeneous material or heterogenecous material in the thickness direction by
Dokmeci (1978) and Askar Altay and Dokmeci (2002b)]. The developed theory was extracted from the 3-D
fundamental equations of piezoelectricity by use of Hamilton’s principle [cf., for instance Tiersten (1969)
and Dokmeci (1988a,b, 1974b) where the principle was used in deriving a higher order dynamic theory of
piezoelectric shells]. It was called a higher order theory since the assumed electric potential contains both
linear and quadratic terms and the assumed mechanical displacements involve linear terms. The theory may
be compared with that derived by Dokmeci (1974b) who presented a higher order theory of piezoelectric
shells in invariant form that contains both the mechanical displacements and the electric potential of order
(n) and includes a theorem of uniqueness as well. The basic field variables (i.e., the mechanical displace-
ments and the electric potential) were assumed to be the functions of the aerial coordinates and the
thickness coordinate, only, though a dynamic theory is developed. Nevertheless, this higher order theory
was used to study properly the electromechanical characteristics of a simply supported circular cylindrical
shell subjected to applied sinusoidal static loads. Some numerical results were reported in detail for both
homogeneous and inhomogeneous shells.

7. Conclusions

In relation to electroelastic continua, certain remarks are briefly stated on the higher order 1-D and 2-D
theories of structural elements available in the open literature. In addition, the transition from 3-D theory
to 1-D and 2-D theories and its relative merit are discussed. It is concluded that the higher order theories
may be still valuable in many instances of applications despite some powerful method of computation.
Emphasis is placed upon the best choice of the basic field variables and the invariant and fully variational
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forms in the higher order theories and the role of the rod or shell parameter in the transition. The methods
of reduction, the integral and differential types of variational principles and the internal consistency in
solutions of the higher order theories are elaborated. The uniqueness was well established in solutions of the
3-D as well as 1-D and 2-D theories of piezoelectricity and thermopiezoelectricity. However, the existence
of solutions has yet to be investigated in all the theories. Moreover, some crucial parameters that delineate
the dynamic response of elements [see Steele et al. (1995) for a discussion of the parameters] and, in par-
ticular, the rod (or shell) parameter that is a basic indication of the accuracy in the 1-D and 2-D theories
still remains to be incorporated into the higher order theories. Lastly, as an example of some oversights,
a higher order theory most recently appeared in this journal is mentioned.
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